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The following problem was investigated. A layer (-a Q z \<.a) of thickness Zz releases 

heat into the surrounding space in accordance with Newton’s law, 
hth/i?h -j- ku = 0, Z= 33 (0.~1 

Here x(2 0) is the coefficient of heat conduction; k(< 0) is the coefficient of heat 
transfer: the temperature of space surrounding the layer is assumed equal to zero: a/&2 is 
differentiation with respect to the exterior normal, 

In the midplane of the layer (z=O) lies a disk of unit radius with its center at the 
point ( 0, 0,O). The disk is assumed to be at the temperature 

UIn = g (9.2) 

It is also assumed that the function g E C, (i.e. that it is doubly continuously dif- 
ferentiable). We are required to find the steady-state thermal field U in the layer with- 

out sources, i. e. the function U at all internal points of the layer (except at points on 
the disk) which satisfies the Laplace condition and the condition at infinity 

Au = 0; u (2, y, z) + 0, for (3, Y, 4 --, * (9.3) 

The symbol =+ :denotes uniform convergence. In the present paper we shall find the 
asymptotic form of the solution for k -+ 0 and k --, 50. 

The most curious case is that of the asymptotic form for k + 0 (Sec.6). which cannot 

be arrived at formally, and requires “nonformal” investigation of the influence function. 
When the layer is replaced by a bounded body, this asymptotic form can be obtained 
formally and can be written as 

k-‘u_~ + uo + ku, + k2u, +_.. (0.4) 
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Further. an effective computational procedure is described for the case ofa thick layrr 
and an axisymmetrical temperature distribution. Computations carried out by this TTICi'l- 

od for a = 10 show that the asymptotic forms for k -a (J and 4 --, 13*3 are sufficiently con- 

jugate, The conjugacy is accurate to within F$, Other problems in the case of a thick 
layer are considered by other methods in [l and 21. 

Using the influence function which takes account of rhe heat transfer conditions at the 
layer boundary (Sec. l), we construct a first kind integral equation (Sec. 2). find rhe asyil!- 
ptotic form of this influence function, and reduce the firs1 kind equation to a second klnii 

equation through inversion of the principal term of the asymptotic form. 

Section 3 contains several ancillary propositions. Sections 4 to ii give the asymptoric 

forms for the cases a -‘m, k-a and k-0, respectively, Computations for evaluating 
the quality of conjugacy for k-+ 0 and k-+a in the case of large layer thickness :!a are 
carried out in Section 7. In Section 8 we justify the asymptotic form of the influence 

function for k- 6' given without proof in Section J.. 

1, The influence function can be found with the aid of the IIankel transform and 
written as ., 

Here Jo is a zeroth-qrder Bessel function of the first kind. The Function (? is the temp- 

erature at the point (x, y, Z) produced by a heat source of unit power situated at the 
point (x, , p, , 0) in the layer releasing heat through its boundaries in accordance with 

law (0.1). 
In order to consider the case U -+m we make use of the expansion (1.2;. 

Series (1.2) is obtained by replacing the function Jo by its Taylor series. Clearly, 
this series( together with its derivatives with respect to x and &) converges uniformly inX, y 

and v when r/a ~~61. In investigating the asymptotic form fork A+m(v-‘a) we makeuse 

of the asymptotic expansion 
1 

G (co, !I(); 1, 9, 0) x J- - 7 1 rCogi Jo (;- t) dt - 

0 

(1.3) 

This expansion is not a convergent series, but merely yields an asymptotic represenr- 
atlon for v*m with unfform estimates (and for derivatives of all orders with respect to 
x and I/) when the quantity r is bounded above and a from zero below. 

Formula (1.3) can be obtained as follows. The integral in (1.1) breaks down into two: 

one with limits (0, v/Z), and the other with (v/Z,a); the latter is uniformly estimable 

as 0 (e -“!J). We can then represent the denominator of the first integral as V cash X 

(l+~(tanh X)/v) and then apply the geometric progression formula; the next step is to 

return to an integral with limits (0,~) in each term, 
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It should be noted that if we were considering a bounded domain rather than a layer, 
the influence function would have turned out to be a convergent series, 

For k* O( v-’ 0) the expansion is of the form 

c (toa Yoi 5, Y, 0) =; -&lnv+ln V iV’Ki($) + $ViLi(:) (1.4) 

The series converges for sufficiently small v. This convergence is uniform (and ap- 

plies to all derivatives of the series with respect to x and L/) when the quantity ris 
bounded above and the quantity a below from zero. The expansion is justified in Sect- 

ion 8. Formula (1.4) enables us to draw the following conclusion. 
For a given source distribution over the disk, the temperature increases without limit as 

PO. 
The principal increasing part depends solely on the integral power N and is of the form 

(U2cJ)iV ln v. 
The first part of the derivation is physically clear, since in the limiting case k = 0 

thermal energy does not flow out of the layer, but accumulates in it, making a steady- 

state impossible. 

It should be noted that in the case of a bounded body the influence function expands 

into a convergent series in power of v, the expansion starting with l/v. 

2, The solution of the problem can be sought in the form 

where 4 is the somce density which is a function summable with the power 

P (1 <P c 2) (f E $I P% 
We then obtain the following integral equation of the first kind for 4: 

ss ’ c (201 Yoi c, Y, 0) f @o, Yo) &I Qo = g (2.. Y), 22 + Y2< 1 
D 

(2.2) 

Eq. (2.2) and problem (O.l)-( 0.4) are related in the following way. They are both 
solvable and have unique solutions. The solution u of the problem is expressible in 

terms of the solution of the integral equation by way of Formula (2.1); the reverse re- 
lationship is given by Formula 

f (zo, yo) = - & au (x;2yo. O) xoz + Yt? < 1 (2.3) 

We shall formulate four ancillary assertions which will be of use later on; the first 

Lemma reflects the maximum principle in the case of a nonconstant temperature of the 

ambient medium: the second Lemma is tne physically obvious fact of monotonous temp- 

erature decrease with a decreasing coefficient of heat transfer; the third and fourth 
Lemmas are mathematical consequences of the first two. 

3, Let us cite the ancillary assertions, 
Lemma 3.1. Let the function U satisfy conditions (0.2) to (0.4) and the condition 

h au/an + k (u - rp) = 0, z = fa 

where Cp is a specified function on the planes z = +Q. It is assumed that the function 

ep is continuous and that cp (2, y, f a) 3 0 as (c, y) -, 00. Then 

min [min g, min cp] < u < max (max g, max cpj 
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The proof is analogous to that of the ordinary maximum principle, 
Lemma 3.2. The solution of problem (0. l)-(0.4) does not decrease if Q 2 0 and 

k J 0. 

Proof. We consider the two solutions U1 and Ua corresponding to the coefficients 
k = kl and k2, respectively. Let k2 > kl. Then 

0 __= A a ‘Uk,; Q) -+ /Cl [(UI - up) - k* U?] 

at the planes z = &a. At the diskD we have uz -U1 =o. By Lemma 3.1,Uz kO,so 
that (by the same Lemma), Uz -U, 2 0. Lemma 3.2 has been proved. 

Lemma 3.3. In any bounded closed domain not containing the diskDand the 
planes z=fd, the solution of problem (0. l)-(0.4) and all of its derivatives tends to some 

limiting function as k-0. 

This Lemma follows from the preceding one. 

Lemma 3.4. The normal derivative aU/az of the solution of problem (0. lp(O.4) 

is summable over the disk with any power (l<)p(< 2) and converges in the same norm 

for k-+0. Further, we have the estimate /jib / &t lip< _4 // g /I c2, where A is a constant 

independent of k. 

Note. This Lemma remains valid in the case a =co. Here condition (0.1) becomes 

the condition U(m) = 0 and the solution is independent of k. 
The proof of Lemma 3.4 is exceedingly cumbersome and is therefore omitted. 

4, The case U * OD. Expansion (1,2) has the following useful properties. All 
the partial sums of the infinite series have degenerate kernels, i.e. they can be re- 

presented as the finite sum ~:a~(%, ~1) ,!Q. (x, ~1). Inverting the side containing the kernel 

l/r, we arrive at the equation of the second kind: 

(4. I) 

Here G,” is the inversion of the operator Go, + the latter operator and the operator & 

are given by Formulas 

ss f (x0, I/o) r2n 
G,f = ‘- dz, dye, 

T 
Hnf .;= (- 1y I” (a) __ 

n! 22n 
f dxo 41, 

D 

Since the integral equation G,f=g is related to the Dirichlet problem for the exterior 

of a disk in unbounded space, from the note following Lemma 3.4 we conclude that the 

series S converges for a> 1 as a series of operators acting from L, into 4 (1 <p< 2). 

This enables us to draw the following conclusions. 

1. For sufficiently large a the solution of EQ. (4.1) can be expanded into the series 

f = fo + u-1 jr + a-2/z + a-3/s -!- . . . (4.2) 

which converges in the norm of the space L, . 
A similar expansion is valid for the temperature field U; this expansion converges in 

the norm of the space C(of continuous functions with the norm 11 u tic = maxnl u I). 
2. The terms of this series can be computed by solving truncated Eq. (4.2). This 

can be readily solved as an equation with a degenerate kernel provided one has a good 
expression for the operator Gil. In the axisymmenical case such an expression exists 

(e, g. see PI, p. 423). 
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Section 7 contains computations for g = 1. We note the following fact which facili- 

tates computations: in order to obtain fl terms of series (4,%) it is necessary to retain 

[#/2] terms in Eq, (4.1). 

5, The case k-rm(v-'a ) . Here we make use of expansion (1.3) whase prin- 

cipal part can be written as 

and is an influence function (on the plane z = 0) of a unit source in a layer at zero temp- 

erature at the bounda%y ,$ = &Q. Inverting the integral operator corresponding to the 

principal part and making use of Lemma 3.4, we arrive at an equatian of the second kind 
of the form 

(I + M) f = GO-l g, G--;‘g E L, 0 < P < 2) 

Here ris an identity operator; M is a completely continuous operator which acts from 

LP into L, (l<p<Z) and is expandable in the asymptotic series 

This enables us to draw the following conclusion. 
The source density and the temperature field L! as k-+” can be represented as the 

asymptotic series 

The asymptotic series for J” should be interpreted in the sense of the space L, (I< 

<JK2); in the case of u it should be interpreted in the sense of the space 0. It should 

be noted that in the case of a bounded domain with heat transfer conditions the analogous 
series would be convergent. 

6 1 The c as e k -+ 0 ( v + 0 ) . Here we make use of expansion (1.4). In contrast 
to the preceding cases, the influence function increases without limit as &? 0. The 

increasing part of ln v/2a remains constant, however. This fact wilt prove useful 
below. We proceed with our analysis as follows, First, we reduce Eq. (2.2) to an equ- 
ation of the second kind by inverting the operator 6, with the kernel l/r 

f - ‘g (Go-l 1) ii f (xc,, yo) dxo dye f ( 5 vk In Y G,,-1 Kk) f .{- ( ; vkGO-1 Lk) f = Go-g 

D k=l ri=o (6.1) 

where KL and .& are integral operators corresponding to the kernels & and Lr . The 

operators Go’X K, and G&-X& act completely continuously from L, into La (l<pcZ), 

while their operator series converge absolutely for sufficiently small V(*). 

3 The series consisting of the operators Bk converges absolutely if the 118,II series 

converges. 
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NOW, eliminating the increasing part, we invert the operator I- lnvK/2a, whereK 

is an operator of the form 

The inverse operator R is of the form 

After inversion Eq. (6.1) becomes 

j + RoGo-‘Lof ‘r In v ( i vkRoGO-lKk) f + ( 5 V”RoGo-lLk) f- 
k=l k=l 

00 

- cp (Y, a) In v ( r] vkR~Go-‘X,) f - Q (v, a) ( 5 v~RIGo%~) I = 
k=l k=O 

=I: RoColg- cp (v, a) R&,,‘lg (6.2) 

AI1 of the operators in the left-hand side are considered in .& (I< p<‘2), This equar- 

ion has the following properties: 

1) For Q = 1 we have R&o-*g = 0, so that the right-hand side tends to zero together 

with Cp(v , a). 
2) The equation 

R&o-‘g = Co-%, If 
!!I 
’ ’ (Go-‘g) ds dy = 0 

is valid 
3) For any function g (e C,) 

~ 
” f R&o’@ dx dy = 0 

4) The operators in all the terms except the first two tend to zero in their norm as 
/PO. The first two terms are independent of 1. 

5) The operator I + R~Go-1 LO (I is an identity operator) is invertible. 

T’he first four properties are self-evident. The proof of property (5) must be prefaced 

by the following ancillary proposirions: 
a) Any infInitely differentiable function $ which together with all its derivatives 

vanishes at the edge of disk and for which 
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belongs to the image of the operator I -t R&O-‘Lo. For our proof let us take g = GO $ 

Then a EC?, and by virtue of property (2) we have K&J-* (Co W = V. For h >O 

Eq, (6.2) has a solution f which as k-0 converges in _&, (l<p<2) to some futWiOn 
f, (see Lemma 3.4). Taking the limit in Eq, (6.2). we obtain (0 + RoCn-‘Lo/o = 9 

(see property (4) ). 
b) The image of the operator I + KoC,.,-~LO contains the function 

Proof of property (5). Functions of the form Q f- a$o (q, co satisfy the condit- 

ions of statements a), b), respectively) form a set which is everywhere dense in the space 

L, and belong to the image. The image of the operator under investigation is closed, 

since the operator satisfies the Fredholm theorem (see [4& Hence, the image coincides 
with the entire space L, , and the operator is invertible. Property (5) has been proved. 

Action of the operator B = (I + RoG,-‘Lo)-’ on Eq, (6.2) yields an equation of the 

form co M 00 

k=l k=l 

- 9, (v,a) ;- VkL,“) f = 9, $2 = BROCO-‘g - cp (v. a) Bfwo-‘g (6.3) 
k=i 

Here Kk', Kk*, Lk', Lk" are linear operators acting from $ into 4. 

All of the operator series converge absolutely for sufficiently small k( LI). and the op- 
erator in parentheses is smaller than unity in norm for sufficiently small k. The latter 

fact can be established by an estimate involving the substitution of operators in the in- 
finite sums by their norms. From the foregoing it follows that the function fcan be 
expresses as the infinite sum 

f = 4 + ( ) It + ( I24 + ‘.. + ( )” 4 + *** 

The symbol ( ) represents the operator appearing in parentheses in (6.3). By virtue of 

absolute convergence, the power of the series arising when the expressions in parentheses 

are raised to their respective powerscan be represented as multiple series. Expanding 

the function cp ( v, a) (which also appears in q) in a series in power of J/in V, collect- 
ing like terms, and arranging them in decreasing order in v, we can obtain the following 

conclusions. 

For sufficiently small k the source density J’ can be expandedin the double series 

f = i v” ; (i,;Z-;)‘r,i. (pMdzd!/=O) 
n=a f=-n 

(6.4) 

which converges in the norm of the space ,&, (l<fi 2). 

If g = 1, then R o o- g = 0 and $ = 0; thus f, O = 0 in expansion (6.4). G 1 
Hence, for g = 1 the density J’ diminishes with k as l/h k 
For the temperature field U we have an expansion similar to (6.4), with the difference 

that convergence in the former case must be understood in the sense of the space 0. 

7. Let us demonstrate the computational procedure proposed in Section 4 for large 
a in the case g= 1. as well as the conjugacy of the expansion for k+m and PO. We 
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retain one term in the expansion of (1.2) in power of l/a( the remaining portion is of 

order a %). The resulting truncated integral equation for determining the density is of 

the form f (xo, T/O) dxo ho 
,,tx _ xo)a + (y _ yo)2 = I- -j- D To (9 f (20, yo) dxo Go, ss To (v) = ; lt - ” e-t r-i’ s Ycosht -/- tsinht 

The value of the density 4 thus determineidiffers from the true value (in the norm 

of L, (l<p< 2) ) by a quantity on order a . 
We denote the total power of the disk sources by N; the function 4 can be expressed 

in terms oflV, 

f&s Y,=+(l- $ To(v)N) J/l_;a_y” 
After integration, we have the following formula for the quantity N: 

N = + 1 + f _?I- To(v)]" C 3 
(7.1 j 

In order to investigate the question of the goodness of conjugacy of the asymptotic 

forms we must Compute the corresponding representation(6 is the Rfemann function): 

For k-a 

To @I z - In 2 + (In 2) v-l - (In 2) vm2 + [In 2 _I- 8/s 5 (3)] vS3 + . . . 

For k+O 

(7.2) 

To W = - V1 In v - 0.69315-0.16667 v In v + 6.40486 v + 0.03333 v* In v + . . . (7.3) 

Substituting Expressions (7.2), (7.3) into Formula (7. l), we obtain asymptotic represent- 

ations for N. Further computations were carried out for a = 10 by means of the Formulas 

N s 0.6659-0.0306 v-l + 0.0318 v--~ (k + 00) (7.4) 
N z 2 (-0.1 In v + 3.0030-0.0333 v In Y + 0.0810 v + 0.0067 va In v + 0.0027 v2)-l 

(7.5) 
Some of the results obtained are as follows: 

v = 0.1 0.2 0.4 0.6 0.8 1 2 2.5 3 

N(k-too)= - - - 0.703 0.077 0.667 0.659 0.65J 0.659 
N (k --+ 0) = 0.616 0.627 0.637 0.643 0.646 0.646 0.650 0.647 0.642 

Clearly, the disparities between the numbers obtained from Formulas (7.4) and (‘7.5) 

constitute less than 2% over a significant range of Vvalues (1.5 < v $2.5).It should be 

expected that such is always the case with sufficiently large a. With small a, certain 
objections can be raised against this statement, In fact, the larger the thickness Is, the 

smaller the role played by conditions at the boundary of the layer (provided the temper- 
ature field is considered in a fixed neighborhood of the disk). This may explain the 
good conjugacy, although boundary conditions can play a decisive role with small thick- 

nesses. 
8, We shall now derive the asymptotic form of influence function (1.4) for k, 0 

(V-4). 
The integral in Formula (1.1) breaks down into two, 
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a3 
0 

I 
(t -- v) df 

vcosht + tsinht 
Jo(+) d,=j . . . + y . . . 

0 0 c 

Here C! is a positive number which will be chosen below. 

The second integral is clearly expandable in a convergent series in powers of W, 

347 

(8-i) 

We subject the first integral to the following transformations: 

c 

’ a (t - 4 6’ J y_ t\ dt = 

vcGaht + tsihht 
O( a ) -sJo(~t)dt+j~~t=:~:~o($ l) dt 

0 0 0 

In the second integral we introduce the new integration variable 7 which is related to 

theEq. ycosht+tsinht=V+T’. 
We now choose the constant c in such a way that the function $( 7) can be expanded 

in a convergent Taylor series for 171s4Csinhc. Itisclearthat@T)turnsoutto 

be an odd function; hence, t ‘(I) is an even function. 
Carrying out one more substitution of variables 7” = 6 and taking account of the even- 

ness of the integrand, we reduce the second integral to the form 

where cp( (; ) can be expanded into a convergent series for 16 1<2112, 

Further, the last integral can be transformed as follows: 

(P(c)--q(--Y) 
51-v 

d5 + cp t- v) [ln (M + v) - ln VI 63.3) 

This integral expands in a series in powers of v which converges for v<m. It is easy 

to verify that the requirements of uniform convergence noted in expansion (1.4) are also 
fulfilled. This completes our justification of expansion (1.4) of Section 1. 
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Let us take the two points x, g/. Z and X, I/ ‘, 2 in a Cartesian coordinate system. Let 
the nonsimultaneous velocity components at these points be U( I?). VCY!$ W( 6) and 

Ut t ‘). U 1 t ‘), W’( fi ‘). respectively. 
We can then write the KPrmbn-Howarth equation in the case of homogeneous isotropic 

turbulence in two ways 

Here 
r = y’ - y, (vv’} = liml (n is the number of the experi- 

ment) 

(u’2u) = - f (r, t’,t) 

These equations are independent, form a closed system, and permit elimination of the 

second moments. It follows that 

il 1 $ + f f (I, t, t’) = F (F, t, t’) 

z F a ( r, t, f)- at 2 i;‘(r, t’, t) = y F (r, t, t’) - F (rv t’, 1) 1 
is the functional differential equation in the third moments. 

Translated by A. Y. 


